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A "two-center" model is proposed for the description of meson production in high-energy nucleon-nucleon 
collisions. In this model the effect of one nucleon on the other is replaced by an equivalent interaction which 
frees pions "bound" in the second nucleon. The model takes into account "peripheral" collisions only and 
does not include mesons emanating from core-core collisions. A transverse momentum (pr) distribution is 
obtained as a function of only the impact parameter and core radius. Our distributions agree well with 
experiment, the most probable pr being 0.3-0.4 BeV/c. The angular distribution obtained does not deviate 
much from an isotropic distribution in the center-of-mass system of the emitting nucleon. 

I. INTRODUCTION 

SEVERAL models have been proposed to explain the 
various properties of the pions formed in very high 

energy (^10 n eV) nucleon-nucleon collisions. Koba 
and Takagi1 have given a review of these together with 
relevant experimental results. In most observed high-
energy nucleon-nucleon collisions the angular distri­
bution is decidedly anisotropic in the center-of-mass 
system, being peaked heavily in the forward and 
backward directions. This led Cocconi,2 Ciok et al.ZA 

and Niu5 to the so-called "fireball" model in which the 
result of the collision is the formation of two centers of 
emission, the pions being emitted isotropically relative 
to each center. As proposed, the model was purely 
empirical and the authors, in general, interpreted the 
emitting centers to be moving more slowly than the 
outgoing nucleons. 

Another two-center model is the "isobar" or "excited 
nucleons" model where particles are emitted from the 
moving nucleons which have become excited during the 
interaction.6,7 A recent article discussing the relation­
ship between the isobar and fireball models is that of 
Pernegr et al? In the earlier forms of the theory of the 
"isobar" model (e.g., Takagi9) the theories of Fermi10 

or Heisenberg11 were used for describing the phenomena 
of emission of the secondaries from both centers. 
Recently, some authors have considered the excitation 
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as being caused by exchange of pions (cf., Romanov 
and Chernavskii).12 

Much attention has been given experimentally to the 
distribution of pT, the transverse momentum of the 
secondary particles.13-16 It has been found that there 
is a peak in the pr distribution at approximately 
0.3-0.4 BeV/c. However little has been done on the 
basis of a two-center model to derive a theoretical pr 
distribution. Most of the models by their very nature 
are unable to give a pr distribution independent of 
arbitrary parameters (see, for example, the recent 
article by Gramenitskii et al.17 for nucleon-nucleon 
interactions at 9 BeV). The model we wish to introduce 
gives pr distributions at very high energies independent 
of arbitrary parameters, together with angular dis­
tributions in the center-of-mass system of each nucleon. 
These results are in good agreement with experimental 
observations. 

The nucleon-nucleon cross section for inelastic col­
lisions is approximately 30 mb in the range 10-50 
BeV18,19; however, McCusker and Roesler20 and 
Brisbout et al.21 contend that a higher energies (3500 
BeV) the cross section for meson production has become 
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approximately geometric. It can be seen then that the 
majority of collisions will be peripheral collisions, that 
is, involving the meson clouds. It will be shown that 
such collisions produce a reasonable proportion of the 
mesons produced in all nucleon-nucleon collisions. For 
example, in a diametrical transversal of a silver nucleus 
by a high-energy nucleon, the average number of mesons 
produced may be at least six to eight (see Sec. I l l for 
further discussion of this), half of them being of high 
energy. (This number moreover makes no allowance 
for additional mesons produced by cascading effects— 
it is the number produced directly by the initial primary 
alone.) 

The model we wish to introduce is for pion production 
from high-energy nucleon-nucleon peripheral collisions, 
that is, collisions which do not involve the nucleon 
"cores." In this model the effect of one nucleon on the 
other is replaced by an equivalent potential which frees 
pions "bound" in the second nucleon (see Sec. II.2). 

The agreement which we obtain with the experi­
mental transverse momentum distribution can be 
understood qualitatively in the following manner. 
When a meson is "freed" by the interaction with the 
other nucleon it still sees an absorbing core of radius, 
say, r0. Since the meson is in a p state it is to be expected 
that its momentum distribution relative to its parent 
core show a maximum for kro^l, or k^l/ro. 

The angular distribution of both incident and struck 
nucleons tends to be close to the incident direction, in 
view of the high forward momentum brought in by the 
incident nucleon. Thus the transverse momentum (pr) 
distribution of all emitted mesons, in any frame of 
reference, tends to be peaked around pr^fo/r^. With 
choice of r0 in the vicinity of 0.5 F, we would anticipate 
a pT distribution peaked a little below 0.4 BeV/c; with 
smaller values of r0 the pr maximum would be expected 
to occur at correspondingly higher values. 

In this paper we carry through the calculation in 
detail for the simple model in which we assume only 
one type of meson (zero isotopic spin). The pr distri­
butions are essentially as anticipated from the above 
arguments. It can, of course, be shown that the pr 
distributions are not dependent whatsoever on the 
model of isoscalar mesons, and also follow when the 
three isotopic spin states for the mesons are included; 
the results regarding multiplicities, however, would 
become slightly modified, but not so as to greatly change 
our conclusions in this regard. 

II. FORMULATION OF THE MODEL 

1. Nucleon Wave Function 

As we are only considering w production due to 
peripheral collisions we take our nucleon wave function 
as a function of the coordinates of the pions. These 
pions may be either inside or outside the core. For the 

initial symmetrical wave function of the nucleon we put 

l M # ) s * . 0 v , r * ) , (1) 

where s=+ or — denotes the spin of the nucleon as 
dz 1/2 and ri, * • •, r,v are the coordinates of the N pions 
present at any instant. N is taken to be constant during 
the short period of the nucleon-nucleon interaction. 

4>a(N) is then expanded in terms of states of the 
remaining nucleon when one pion (say the ith) has been 
extracted and single-particle wave functions for the ith 
pion, i.e., 

UN) = Z fln^n^-^^W, (2) 

where (N— i) represents all coordinates of the N pions 
apart from the ith pion, the \[/8l(N—i) are normalized 
and symmetrical and the gt^i) are normalized wave 
functions of states h of the ith pion in the potential 
field FV(r*) (see next paragraph). Because of the sym­
metry of \I/S(N) we have 

&nh~a8ihJ^Q/sitv w) 

We may also expand \f/8l (N— i) as 

where g^ (ry) represents a normalized wave function of 
the state h of the jth pion in the potential field 
Fj\r_/(r,-). We think of Fj/(r*) as being a good average 
of the interaction of the ith pion in the nucleon and 
VN-i(tj) of the jth pion in the nucleon with the ith 
pion removed. Since N is large, 

F*_/( r )=*V(r)=F ' ( r ) (5) 

so that, substituting Eq. (4) in Eq. (2), 

* . (# )= E «.i«ifl.8i2^.2(^-*-j)fti(r<)ftife). (6) 

It will be noted here that we have neglected the inter­
action between the ith and jth pions. This is reasonable 
outside the core where the effect of the interaction is 
small compared to the effect of V'(r). 

In the region outside the core we approximate to 
MX) ^ 

* . (# )= L Cn(ls;sh<m1)f81(N--i)Bh1(iKri) 
aimi 

XYlmi(6ij(Pi)J (7) 

where \pai(N'—i) represents the ground state of the 
nucleon (in our model this is the only state with all 
mesons bound), r»>fo= core radius, C is the appropriate 
Clebsch-Gordan coefficient, hi is the spherical Hankel 
function, Y\mx is a spherical harmonic, and B is a con­
stant such that \p8 (N) is normalized; that is, B2 measures 
the probability of any given meson being in the cloud. 
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The ith pion is bound to the nucleon with zero binding 
energy, that is, 

0=ft2(w)V+w fV, (8) 

thus 

K=mTc/fi, (9) 

where mr is the pion rest mass. We only have terms 
hiYim since the nucleon remains in an /=0 state 
(although its spin may change) and the pion is pseudo-
scalar. Other terms, hiYim for 1>1, are taken to be 
negligible outside the core. We shall measure momentum 
in units of m^c/fi (140 MeV/c) and lengths in units of 
k/ntrc (1.4 F). 

As we are only to be concerned with terms outside 

the core, we define the function gm(i) as 

fr(*>*iWFi.(«^i) (10) 

for r t>fo and a smooth function fitting to this form for 
fi < ro such that 

/ 
fr.i*(»)f«.(*)<fr«=.B-<8. (ID 

Then Eq. (7) may be written 

-2Uhfc(N-i)g±l®l. (12) 

Continuing expanding using Eqs. (2), (6), (12), for n 
even, 

*+(#)=-
Bn 

and for n odd, 

P^.kimiMN-i «)&o(f)*o(/)-2g1(i)«-i(i)]- • •[go(/)go(m)-2g1(Og-i(m)]}, (13) 

MN) = 
Bn 

(n+2)Wnl 
•Py...kim{[}l>+(N-i m)go(m)-21^(N-i m)gl(m)~] 

XCgo(f)goO')-2^(f)^iO")]-' •Cgo(%o(0-2gi(%-i(0]}, (14) 

where P»y...^im=sum over all permutations of the n 
pions i, j , • • -k, /, w. Terms which give zero on per­
forming Pij...kim have been eliminated. The $+(N) are 
normalized. 

It is quite obvious, of course, that the wave function 
expressed by Eqs. (13) and (14) will only be a good 
approximation when n<KN. It is only reasonable when 
there are few mesons outside the core radius. As we 
shall see later, however, we do indeed obtain maximum 
contributions from terms which involve few mesons 
only outside the core, consistent with the idea that the 
average number of mesons in the nucleon meson cloud 
is only a little above unity. 

2. Nucleon-Nucleon Interaction 

We consider one nucleon, «i, as being at rest and the 
other, m, approaching with impact parameter b. The 
effect of m is to free some pions from tii, the interaction 
between w2 and a pion in the cloud of n\ being replaced 
by an equivalent potential V(r) which is symmetrical 
about a line parallel to the z axis (denned by direction 
of motion of ni) and at a distance b from it (Fig. 1). 
This neglects any elastic scattering of m by wi. Strictly 
this potential depends on both z and t. However, at 
high energies we can take V (r) as a constant potential 
applied for a time / where ct is approximately the 
thickness of ni in the direction of motion. 

We shall put 
V(x)=Vv{r'), (15) 

where 
/ = (62+r2 sin20- 2br sin0 cos**)1'2. (16) 

The question now arises as to what form we shall 
take for v(rf). This involves more detailed knowledge 
of the x-nucleon interaction than is available at the 
present. However, taking into account the effect of the 
Lorentz contraction of ni and the range of the 7r-nucleon 
interaction it does not seem unreasonable to take 

v(r') = <rr', (17) 

where lengths are in units of the pion Compton wave­
length. It will be seen that our results are reasonably 
unchanged when other shapes of v(rf) are taken. 

3. Final Wave Function 

The final wave function will be 

Z AXIS 

FIG. 1. Relationship 
between r', b, and r. 

POSITION 

(18) 

PATH 
OF 
N 2 
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where the um
fs are given by 4. Pn(k,b), Pn(b) 

UQ—ip8>(N), We will now define Pn(k,£)dk as the probability of 
_ JSJ^X/2 v- i / *r -\r (r \ n mesons being emitted, one of these having momentum 

« * - * 2^¥vliv * ; c k l w , k, for a given impact parameter 6, that is, 

X C k l W C k 2 W ' e t C P . ( M ) - («! ) - /"|6k,..knp5(k-k1)rfkr • - A . 
Here Ck (r) is the normalized wave function of a free J 

pion which has the asymptotic form eik'T, and ^v is a 
normalized symmetrical wave function of the remaining m (f |1)_, f j j | S 5 ( k _ k r ) d k l . . . ^ ( 2 2) 
nucleon which we shall assume is the same as the cone- / ' ' 
sponding ^v in the initial nucleon wave function, Eqs. 
(13), (14) with possible spin change of the nucleon. p%(fi) fa A e p r o b a b i l i t y o f n m e s o n s b e i n g e m i t t e d a t a 

The ww s are orthonormal, that is, g i v e n i m p a c t p a r a m e t e r hy that is 

U..,*. . .k,Ar'feB«f.nE*-V). (20) _ ... /v -
J W H P«(&)= JPn(k,< 

The effect of the core on our model is to absorb any r 
"free" mesons which may pass through it, and we ={n?rll \bkV..*n\

2dkvdkn. (23) 
therefore approximate Ck(r) as J 

Ck(r) = (27r)-3/Vk'r, (r>r0) (n) The factor (»l)"1 is needed since by definition of um by 
= 0, (r<fo). Eq. (19) we have 

In this form the Ck(r) are not exactly orthonormal. £k—k = &pnr k (24) 
However Eq. (21) is only used in evaluating integrals. 

In Appendix A we derive the perturbation formula where P is any permutation of kx, • • •, kn. 
used to calculate bm. If we define 

b)dk 

7m(k) = (27r)3>2(V3)1/2 / c k * « exp[-*/7v(f')/*]&.«&, (25) 

J W = U.*(N-i 0 I I {expC-*^(r / ) /*]}^(AT-f l)dTN-.i-.... 

where i, • • *, / are r pions and put 

z, (26) 

we have, in general, 

/ = (3/2y»B/W, (27) 

d=tV/fi, (28) 

n/2 

6k,..k„=/"(^C„/«!)1«(«+l)-1'2Ln.,+P12...n n C/o(k«.0/o(k«)-2/x(k„_0/-i(k„)] (29a) 

imm\ 

for w even, and 

<n-l)/2 

6k1...kn=/"(^Cn/W!)^(w+2)-^Pl2...n{ JJ [/o(k2t_1)/o(k2,)-2/1(k2^1)/_1(k2t)] 
t—i 

X [ / o ( k . ) £ ^ + - 2 ^ / 1 ( k n ) L ^ J } (29b) 
for w odd. 

If we define 

^B,= (21r)-»/'/mi*(k)/me(k)(fll, (30) 

where w=w1w2 and | « i | = | « , | (the integral is zero for | « i | ^ | w 2 | ) , and perform the sum over final and average 
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over initial spin states, we find for the #-even case 

P n ( k , 5 ) = ( ^ ) ! ( ^ - 1 ^ 

X E E («c^,*"-wil1-ii_,'—2») ,(i»-9n- i lc iT^, 
l**Q m a . Q 

X 

and 

t t Z+l2 p i , ( / ! * + /_!«) 2^_1Re/1*/_1-ji 
^o/o»+ + (31a) 

(»-2J-l)L «+l J-»+l JI 

(34) 

i>»(6) = C( |«)!] 2C(»+l)!] - 1^C„(35 2 /4^)"( |L^ | 2+|L^| s ) i : Z ^ C ^ C ' C ^ o ^ ^ i M , ! ' - " ^ 22'. (32) 

In Eqs. (31) and (32) we have slightly altered our notation by putting 

Lngt> = Ln+, (s=s) 

=£„_, (*=-*')• (33) 
If as a first approximation we put 

AQ=AI=A, 

.4-1=0, 
(for justification see Appendix B), we have 

Pn(k,6) = | ^C n (3^ /4x)M»- 1 (27r ) - ' ( | i ^ | 2 + | i :n - | 2 ) ( | / o | 2 + | / i | 2 + | / - i | 2 ) , (35) 

Pn(6) = A ,Cn(3B2^/4^)»(|ZB+ |5+|£n_|s). (36) 

It should be noted that we have used the relation 

£ -*«C|»_,2"= (»+l)![($»)!]-*. (37) 
i-0 

For n odd and using the approximation (34) we find that Pn(b) is the same but there is a slight change to Pn(k,b): 

Pn(k,6) = K3^/4^)M»-H27r ) -^C„{( | i : ) l + | 2 + |X^ | 2 ) ( | 7o | 2 + | / i | 2 + | /_ i | 2 ) 
- (2wy») Re(Ln+*L^) RfiCJ0*(/i+/_i)]}. (31b) 

In Appendix C we show that 
\L*\*+ | L _ | 2 = (l-3JBM/4ir)*-», (38) 

so that 
P«(b) = *C»(3i3M/4r)»(l - 3BM/4x) w"». (39) 

This is the result we would have obtained if we had let x be the probability of freeing any given meson so that 

Pn=^CB*"(l-*)Ar-». (40) 
Hence we see that x is given by 3.BM/4ir. 

We now define imn(k) by 

/»(k)=f C(-«0"/»iy-.(k), (41) 

that is, Imn is given by expanding exp(—idv) in powers of d. Then making the approximations given by Eqs. (7), 
(10), and (21), we have from Eqs. (25) and (41), 

/»»(k) = / dr I d$ dip exp{^r[cosx cos0+sinx sin0 cos((j— ^)]}fln({#4-r2 sin20-2&r sin0 cos<p}1/2) 

X (l+r)e~r(5m0 COS0+«M x 2~^ sinfc***) sin0, (42) 
where 

k = (*,x,cr). 

On making use of various relationships between the Imn(k) for related x and <r, for example 

Imn*(k,X,<r)*=I-mn(jk, 7T~X, <r±*), (43) 
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we find that 
/•* /*** oo 2n-l ( - l ) H - n 

/ I / J 2 <Z<r=4 / J ( r I ^ L Imr*Im,1n-T , 

J_T Jo —i - i r ! ( 2 « - r ) ! 

/

» /•** oo 2n ( — l ) r 

Re/0*(/i+/-i)*r=4 / (fa £ <Z2»+1 £ 
r - l f ! ( 2 « + l - f ) ! 

• I m [ / o r * ( / l , 2 n + l - r + ^ - l , 2 n + l - r ) ] . 

That is, 

f \Im\*da=±[ d*t<P\Imi\*+Omi, 
J-* Jo 

/" Re/o*(/i+/-i)<fa=4 f Ar[(d8/2!) Im{/oi*(/i2+/-i2)-/o2*(/ii+/-u)}+0(rf i)]. 

Thus for w even and odd we have, neglecting higher orders than <Pt 

f da Pn{kfi) cc f ( | 7 o i | 2 + | / n | 2 + | / - i i | 2 ) A r . 
J-r Jo 

(44) 

(45) 

(44a) 

(45a) 

(46) 

In Figs. 2-7 we have plotted this integral multiplied 
by k2 sinx. Thus, in Figs. 2-7 the curves plotted give 
the distribution of k and pr, where pr is the transverse 
momentum k sinx- In Sec. I l l we discuss the multi­
plicity distribution and the magnitude of d. It will be 
seen that d is approximately unity so that our neglect 
of terms of higher order than d2, requires justification. 
Detailed numerical calculation, however, checks what 
is apparent intuitively, that the coefficients of dn 

become small rapidly as n increases. It is thus found 
to be quite accurate to ignore orders higher than J2. 

The integrals involved in calculating Im and A m were 
performed numerically on SILLIAC, the digital elec­
tronic computer of the Basser Computing Department, 
School of Physics, University of Sydney. Details are 
given in Appendix D. 

5. Cross Sections 

In any collision pions may be produced from either 
nucleon. Pn(b) gives the probability of n pions being 
produced from one nucleon, so we now introduce (Pn(£), 
the probability of n pions being produced in a single 
collision. For simplification we take N, the number of 
pions in the nucleon at the time of collision, to be the 
same for each nucleon. It is clear that such a simplifi­
cation should not affect our results in any way. Then 
we will have 

<P»(ft) = E P-i(b)Pi{b). (47) 
i«0 

Using Eq. (40) we have 

(Pn (b) = 2NCnx
n (1 - x)2N~\ (48) 

To obtain the cross section for pion production from 
peripheral collisions we assume that no pions are pro-

K (Bev/c) 

FIG. 2. Momentum distribution of pions in center-of-mass 
system of the^ emitting nucleon for impact parameter 0.6 and 
angle of emission fir. Distributions are shown for core radii r of 
0.25 and 0.5, and averaged over azimuthal angles of emission. 
Lengths in each case are units of 1.4 F. 

0.2 0.4 Ob 

K (Bev/c ) 

FIG. 3. As in Fig. 2 except for impact parameter 1.0, 
same angle of emission. 
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duced for an impact parameter less than 60, where bo 
is approximately twice the core radius. Then we have 
that crn, the cross section for production of n mesons, 
is given by 

(TU = 2T (?n(b)bdb. 
J b0 

(49) 

From Appendix B and Fig. 10 we see that for a core 
radius of 0.25, 

,4~6^26J2, (50) 

so that x in Eq. (48) will be given by 

*= (183V/47r)<r-26. (51) 
We put 

a=18#yy47r (52) 

and have calculated <rn for n= 1, 2, 3 and various values 

Q8 I.O Q2 0.4 O.6 

PT ( B e V / c ) 

FIG. 6. As for Fig. 5, except for core radius of 0.5. 

Q2 0.4 O.6 00 1.0 

FIG. 4. As in Fig. 2 except for impact parameter 1.0 
and angle of emission \ir. 

U
ni

ts
) 

0 

< 

X 

ttl 

of 

l/f N^ 

£—J 1 1 1 1 L 

\tt% 

\x-% 

L _ l 1 1 

0.4 0.6 

PT(BeV/c) 

FIG. 7. Transverse momentum distribution of pions averaged 
over all angles of emission for impact parameter 1.0 and core 
radii r of 0.25 and 0.5. 

TABLE I. Cross sections for 1, 2, 3 pion production for different 
values of Na (Eq. 52) and minimum impact parameter b0. The 
cross sections are given in millibarns and bQ in units of 1.4 F. 

Q2 0 4 O.6 
PT (BeV/o) 

Q8 LO 

Na 

0.5 

1.0 

2.0 

5.0 

FIG. 5. Transverse momentum distribution of pions for angles 
of emission x equal to | x and Jx in the center-of-mass system of 
the emitting nucleons and for a core radius of 0.25 and impact 
parameter of 1.0. The dashed line shows what the distribution for 
X*= \ir would be on the basis of the distribution for x = W assuming 
isotropy. The distributions have been averaged over all azimuthal 
angles. 

0 
0.2 
0.5 
1.0 
0 

0.2 
0.5 
1.0 
0 

0.2 
0.5 
L0 
0 

0.2 
0.5 
1.0 

24.6 
23.7 
19.8 
11.8 
406 
40.0 
35.1 
22.4 
60.6 
60.4 
56.7 
40.4 
89.0 
88.7 
88.0 
76.9 

2.52 
2.18 
1.25 
0.32 
7.00 
6.36 
4.11 
1.18 

15.2 
14.7 
11.3 
4.1 

29.1 
28.9 
27.7 
16.2 

0.33 
0.22 
0.08 
0.009 
1.61 
1.28 
0.54 
0.06 
5.46 
4.90 
2.70 
0.42 

14.3 
14.2 
12.2 
3.9 

of N and a. It was found that the results depended 
only on the product Na (within 1%) and in Table I 
we give the results for different values of &o and Na. 
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HI. DISCUSSION OF RESULTS 

This model gives a transverse momentum distri­
bution and energy and momentum distributions in the 
center-of-mass system of each nucleon, as a function 
only of the impact parameter and the radius of the core 
of the nucleon. For an impact parameter of 1.0 (i.e., 
1.4 F) and core radii of 0.25 and 0.50, the most probable 
pT are 350 MeV/c and 280 MeV/c, respectively. With 
an impact parameter of 0.6 and the same core radii, 
the most probable pT are 450 MeV/c and 340 MeV/c, 
respectively. These values are averaged over all angles 
of emission. 

These results are in agreement with the experimental 
results13"16 except that the "tail" in our results is longer. 
This is to be expected as we have not introduced any 
energy limitations in the pion production. Such an 
energy limitation would shorten the tail and also 
decrease slightly the value of the most probable pr-
This is suggested by experimental observations at lower 
energies. Blue et al.n obtained a most probable pr of 
90 MeV/c for 4.2-BeV proton-proton collisions. This 
is an energy where we expect energy restrictions to be 
very important. In comparing our results with experi­
ment we also need to remember that our model is based 
on nucleon-nucleon collisions and most experiments 
involve nucleon-nucleus collisions. However, we expect 
the pr distributions from such collisions (particularly 
distributions for the high-energy pions) not to be much 
different. This has been shown experimentally by 
Matsumoto.23 

The angular distribution of the emitted pions is 
almost isotropic (Figs. 5 and 6) with respect to the 
center of mass of the emitting nucleon. Such a distri­
bution could not be distinguished from an isotropic 
distribution with present experimental techniques. 

FIG. 8. Walker-Duller plot for an isotropic distribution f(0) = 1 
(shown by dashed lines) and for the distribution f(0) — i(l+sin0) 
(shown by solid lines). Lines are shown for 7 = 10, 100, and 1000 
where 7 is the Lorentz factor for emitting center in the laboratory 
system. 

22 M. H. Blue, J. J. Lord, J. G. Parks, and C. H Tsao, Nuovo 
Cimento 20, 274 (1961). 

23 S. Matsumoto, J. Phys. Soc. Japan 17, 1 (1962). 

TABLE II. Average multiplicity ft as a function of Nx 
[see Eq. (53)]. 

Nx 0.1 0.2 0.5 1.0 5.0 
a 1.04 1.21 1.58 2.31 10.01 

This can be seen directly by comparing the Walker-
Duller plot24 (Fig. 8) for an isotropic distribution, 
/(0)=1, and for the distribution, /(0) = f (l+sin0), to 
which our calculated distribution approximates. In the 
center-of-mass system of both nucleons the distribution 
is, of course, strongly peaked in the forward and back­
ward directions. 

We now turn to the multiplicity distribution, that is, 
(P« as a function of n. Using Eq. (48), the average value 
of n is 2Nx; on correcting (Pn so that w=0 is not in­
cluded, we have 

n=2Nx/ll- (l~x)2NJ (53) 

In Table II we have n as a function of Nx. It is seen 
that the multiplicity distribution is determined only 
by Nx, that is, the product B2NA. To determine B2N 
we note that with our approximation in Eq. (7), the 
average number of mesons outside the core is NQi where 
No=2.73B2N for core radius of 0.25, and N0=0.92B2N 
for core radius of 0.5. Thus, using Eq. (51) we have, 
for a core radius of 0.25, 

^ar-0.52^-2Wo. (54) 

The experimental observations at very high energies 
suggest that the inelastic nucleon-nucleon cross section 
is geometric.20,21 Allowing for a minimum impact 
parameter of 0.5 (twice core radius 0.25) and a cross 
section for inelastic core-core collisions of no more than 
one-quarter geometric, we see on comparison with 
Table I that Nao^l.5. We will have then, from Eq. 
(54), d?N<£^3. Thus, we have that d is approximately 
unity. 

To relate d to V, the strength of the effective per­
turbing potential, Eq. (28), we have that ct~y~xXlA 
F, where 7 is the Lorentz contraction factor for one 
nucleon relative to the other. Hence 

Vc^UOyd MeV. (55) 

Thus HOd MeV is approximately the average strength 
of the effective 7r-nucleon potential at low energies. 

For Na= 1.5 and an impact parameter of 0.5 we have, 
from Eq. (54), Nx~0.55. From Table II, we see this 
gives an average multiplicity for a collision with such 
an impact parameter of 1.6. An approximate calcu­
lation for a diametral collision with a silver nucleus 
gives an average of six pions, 3 of high energy and 3 of 
low, produced according to this model by the incident 
primary nucleon; to this would have to be added all 

M N . M. Duller and W. D. Walker, Phys. Rev. 93, 215 (1954). 
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additional pions produced by cascading effects within 
the nucleus. 

While our model is unable to produce the high multi­
plicities observed in experiment without introducing 
core-core collisions, yet it is seen that it does account 
for a significant proportion of the mesons produced. We 
would contend, from a study of Table I, that most of 
the low-multiplicity nucleon-nucleon collisions are 
described by this model. Moreover, if there is any 
cascading within the nucleus, the pions formed by these 
secondary collisions would have the same pr distri­
bution. 

In order to determine the sensitivity of our model to 
the original shape of the effective potential v(rf) we 
have also considered the square-well case v(r')=l for 
r'<R and v(r') = 0 for r'>R. Results for the function 
( | / o i | 2 + | / i i | 2 + | / - n | 2 ) ^ 2 s i n X are plotted in Fig. 9 
for b=ly x=i*"> <7=0, and for the two ranges R=02S 
and 0.5. We see that the over-all behavior of the results 
is again achieved and that there is again a peak in the 
transverse momentum distribution—this time, how­
ever, at a somewhat higher value. Thus, for detailed 
comparison with experiment, the shape v{rf) — e~r' is 
preferable to the sharp square well. 

The present model is clearly in the category of an 
" isobar" model, in the sense that pions are emitted 
independently from a parent excited nucleon. I t has 
been suggested that a "fireball" model is applicable 
rather than an "isobar" model,8 although this has not 
been demonstrated conclusively owing to experimental 
uncertainties involved in determining energies. The 
present model ignores outgoing pion-pion correlations 
due to pion resonances; while important at the par­
ticular resonance center-of-mass energies, the total 
contribution of the resonances is considered not to be 
of dominant importance after integration over all out­
going energies is performed. 

Thus, in proposing the present model, we are able to 
obtain momentum and angular distributions essentially 

independent of arbitrary parameters; although not 
yielding the observed multiplicities, the model is appli­
cable to a significant proportion of the pions produced. 
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APPENDIX A. PERTURBATION FORMULA 

The following derivation is an extension of that given 
by Schiff.28 Suppose that 

H=Ho, t<0,t>t0 

= Ho+h, 0<t<t0 

HoUn=EnUn, 

(Ho+h)wK=Ekwk, 

where un, Wk are a complete orthonormal set of functions 

/ < 0 : \l/=SnanUnexv(-iEnt/fi), 

0<t<t0: \p=Skckwkexp(-iEkt/ti), (A2) 

t>t0: ifr*= SmbmUm exp(—iEj/fi), 

where Sn denotes sum of discrete n and integration of 
the continuous part of its range. 

Continuity conditions at t=0, t=t0 give 

bm=Snan / / um'*{Skwkwk* 

Xex&-i(Ek-Em)h/h~]}undTdTf, (A3) 

where the prime denotes a different set of coordinate 
variables of integration. If the system is initially in a 
state wo, #n=5 n 0 and 

1.0 Q2 OA o.6 a s 
K,FV(Bev/d) 

FIG. 9. Transverse momentum, pT, distribution for a square-
ell effective 

0.5 (see text) 

*= / U„t 
1 exp[— (Uo/ti)h~]uodT, (A4) 

where we first use the property 

f(HQ+h)wk=f(Ek)wk 

and then the closure property 

Skwk(T')wk*(i) = 5(t-r'). 

In our model, 

(A5) 

well effective potential for <r=0, x^h*, &=1, and 12=0.25 and " L . I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
" ' pany, Inc., New York, 1955), 2nd ed., pp. 217-8. 



852 

so that Eq. (A4) gives 
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1.0 

hm^ fum* exp[(-t*o/*)E <r/)2uodrN. (A6) 

APPENDIX B. SIMPLICATION OF Am 

Combining Eqs. (25) and (30) we have 

> / ^m=(47r/3) Ck(rx)Ck*(r2) 
0.5 

E 

to 
X e x p { ^ ( ^ ) - ^ r 2

, ) ] } g r „ 1 * ( r i ) 

Xgrm{t2)dtXdt2dk. ( B l ) 

Let us perform the k integration first. 
The Ck(r) and the bound-state wave functions form 

a complete orthonormal set so that 

k 

\ 
1 \ 

h 

P 

L-

A-*-*-F 
\\ 
V-—E 

V 
\ \ 

* ^ c 0 4 \ \ 

V*~£|4 ^ 

i 

• * • « . ^ ^ * * * * -

r- O.S 

^ • ^ H T 
III 1 

/ 
Ck(r1)Ck*(r2)^k~5(r1-r2)--Em52gm(r1)gwl*(r2)) 

( f»=0,±l) . (B2) 
Hence, 

Am~(4ir/3){^-25mim2-Lm #2 [gm(*i)gm*(r2) 

Xg*,(r,)*idr2f. (B3) 
On putting ' 

gm(*)~R(r)Ylm(d,<p) 

we see that the integral is zero if j Wi | ?£ \ mi | and 

as i.o i.s 2.0 
b (Impact Parameter) 

FIG. 11. As for Fig. 10 except for core radius of 0.5. 

depends only on the relative signs of Wi and w2. Thus, if 

Em= (4x/3) fgm*(l-e-id*Wr, (B4) 

where m = m\m^ \m\\ = ]w2|, we have that 

^o=2ReEo~(3JB
2/47r)|£0|2J 

A1 = 2ReE1-(3B*/4w){\E1\*+\E„1\>}, (B5) 

4_i=2 ReE- i - (3j52/47r){E1£_1*+£-iiS1*}. 

We now put [compare Eqs. (41) and (42)] 

(—id)n 

(B6) 
n==i n! 

that is, 

$mn= (4TT/3) / gtni*vngm^r, (B6a) 

and observe that £mn is real. We could similarly put 

(B7) Am=Z 2(—1)-+* aWl2n 
n-l (2») ! 

so that 
^m,2n=Sm>2n-0(B2). (B8) 

I.O 1.5 
b (Impact Parameter) 

2.0 

In Figs. 10 and 11 we have plotted &mi and £m4 as a 
function of the impact parameter b. We see that it is a 
reasonable approximation to put 

FIG. 10. STO,2n [see Eq. (B6a)j as a function of impact parameter 
b, and for core radius of 0.25. Curves are drawn for w=0, =bl; 
n»lt 2. For comparison, the curve given by 6e"~26 is also drawn. 
b is given in units of 1.4 F. 

A-r=0, 

even for d approximately unity. 

(B9) 
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APPENDIX C. DERIVATION OF EQUATION (38) 

We have given in Eq. (26) the definition of Lr88>. Let us consider the case when (N-r) is even; then 

Lr»' = B*w-*)[m{N-r+l)l(N-r)iy'1 / 4>.*4>APi-w-*) I I Cgo(2i-l)fo(2i)-2g1(2i-l)^i(2i)]}* 

N-r *<#-*•) 

X I I exp[-^(r /)]P1 . . .Cv-r ) I I Lgo(2i-l)go(2i)--2g1(2i--l)g-1(2i)~]dTv-dtN-rdx, (CI) 

where we have introduced an extra term <£, into the f / A 
expansion of $* to represent the nucleon stripped of all J ^* ^ ' 
pions and % represents the variables describing this =OL_, ($=—$') (C2) 
function. If we are to allow for possible spin change in so that 
this "bare" nucleon we would have to include some l^- i+ l^+l = 1 - (C3) 
extra term, say, v(x)> m t n e perturbing potential. Then in a way similar to that used to obtain P„(6), 

Let Eq. (32), we have 

Lr±=a±BW-*Z(N-r+l) ^ C ^ - r ) ] - 1 E £ ^ 2 i Q ( ^ - D - I C ' C J D O * ^ ^ - ^ ! " / ? - ! ^ ^ > ] 2 , (C4) 

where 

A»= / gm*e-idvgm>j,dr, (fn=nt1m2; | f»i| = | m2|). (C5) 

From Eq. (B4) we see that so that 

I > . - W - - ( 3 / * r ) ^ (C6) | ^ | » + | ^ | « - ( l - ^ / 4 , ) - . (CIO) 

so that, approximately, APPENDIX D. NUMERICAL INTEGRATION 

_ _ _ _ , _ The numerical method used to calculate <Smn [Eq. 
DQ-Di-D;D-i-i). (U) (B6)-j a n d ^ ^ (42)-j w a g a n e x t e n s i o n o f t h e 

With this approximation, Newton-Cotes 9-point formula26 to three dimensions. 
\T 121 ir |2_ 1 rmn\N~r\2 / r f t \

 T h i s i s equivalent to fitting a polynomial of the eight 
l^r+| i- \^r-\ - IKP v) 1 . ^ 5 ; o r d e r i n e a c h o f t h e t h r e e v a r i a bi e s fj ^ ^ through 93 

Also combining Eqs. (C6) and (B5) we have points. The mesh sizes were chosen after various tests 
and gave &mi and Im\ to an accuracy of better than 3%. 

54|Z)|2=l-3JBM/47r (C9) For Smn we note that 

/ • * > / • ! * • / • « • 

<§mn=4 / <fr / del d<p exp(-nrf-2r) ( l + r " 1 ) 2 ^ cos20+§5ml sin2(9+|5m,_i sin20 cos2<p) sin0. (Dl) 

For 7TOn we first calculated 7m» given by 

/•co * T /•*-

^ n ( W ) = / ^ / * / ^^Cexp(ik-r~^ /-r)]( l+r)(5m 0 cos0+$|mji2-1/2 sinte^*) sin0, (D2) 

so that Hence we used the Newton Cotes 9-point formula in 

IUk,X,<r) = Jmn(k,X,«)+J-mn(k, X, - * ) . (D3) t W° W a y S : 

/•** 1 rT 

Jmn(k,x,<r) was calculated for <r=0, zfcjir, dbi?r, ±§7r, / d<r--=- da--, (D5a) 
I T . These values were used to give 170i 1

2+ | In |2 ^0 2 J 0 
+ 17_ii 12 for (7=0, fx, J7r, fir, £*•. The integration over ^r kw 

a, Eqs. (44a) and (45a), was performed noting that [ d - - -=- I A fDSM 
/-o -ir -x •'o 2y_ i i r 

/ d < T - - = da- • • = / AT- • •. (D4) *« See, e.g., H. Mineur, Techniques de Calcul Numlrique (C. 
^ -JT i 0 ./ i» Beranger, Paris, 1952), p. 243. 
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Comparison of the results from (DSa) and (D5b) gave 
an idea of the accuracy with which we had calculated 
the integrand. Agreement was found to be better than 
1%. 

The results plotted in Fig. 7 (integration over a and 
x) were obtained from the results shown in Figs. 5 and 
6 by noting that the pr distribution for x = i ^ is not 

I. INTRODUCTION 

DURING the initial investigations of the composi­
tion of secondary particle beams emitted at 

various angles from internal targets in the 33-GeV 
alternating gradient synchrotron (AGS) at Brookhaven 
National Laboratory, we analyzed the beam emerging 
at 30° by measuring the time of flight of particles after 
momentum selection by magnetic deflection. The re­
sults of the beam surveys at other angles were performed 
by other groups and have been reported.1,2 Our results 
on the intensities of emerging beams of pions, protons, 
antiprotons, and K mesons are presented mainly for 
the practical interest in these investigations for the de­
sign of future experiments at the AGS. 

The copious production of deuterons and mass-three 
nuclei, discovered at CERN3 during the observation of 
forward secondary beams, was also observed at 30° 
with very little change in intensity relative to pions 
and protons. If these particles were produced in nucleon-
nucleon collisions, one would expect, on the basis of 

*Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

fOn leave from the University of Ljubljana, Ljubljana, 
Yugoslavia. 

1 W. F. Baker, R. L. Cool, E. W. Jenkins, T. F. Kycia, S. J. 
Lindenbaum, W. A. Love, D. Luers, J. A. Niederer, S. Ozaki, 
A. L. Read, J. J. Russell, and L. C. L. Yuan, Phys. Rev. Letters 
7, 101 (1961). 

2 V. L. Fitch, S. L Meyer, and P. A. Piroue, Phys. Rev. 126, 
1849 (1962). 

*V. T. Cocconi, T. Fazzini, C. Fidecaro, M. Legros, N. H. 
Lipman, and A. W. Merrison, Phys. Rev. Letters 5, 19 (1960); 
L. Gilly, B. Leontic, A. Lundby, R. Meunier, J. P. Stroot, and 
M. Szeptycka, Proceedings of the 1960 Conference on High-Energy 
Physics at Rochester, (Interscience Publishers, Inc., New York, 
1960). 

far different from what would have been predicted from 
the distribution for x= I71" assuming isotropy. Curves for 
— x tV*"> 6*"> i71*? (5/12)ir were plotted using this fact 
and the calculated distributions for x=i*" and §TT and 
then the integration performed numerically from the 
graph. Errors involved in this procedure are negligible 
compared to other approximations already made. 

kinematical arguments, that their yield would decrease 
rapidly at the larger laboratory angles. The large ob­
served yield suggests strongly that the production of 
these particles involves cooperative phenomena in­
volving several nucleons of the target nucleus. We have 
studied the momentum distributions from ~ 1 to 3 
GeV/c of these particles (at 30°) from various target 
nuclei. The main subject of this paper is a report of 
these measurements and a discussion of the results in 
terms of existing models. 

II. EXPERIMENTAL TECHNIQUE AND RESULTS 

1. Counter Arrangements and Electronics 

A schematic diagram of the beam layout is given in 
Fig. 1. The beam of secondary particles emerging from 
the internal target at 30° from the AGS beam passed 
through a hole (^6-in.X8-in. cross section) in the main 
machine shielding wall. Thirty-eight feet from the tar­
get the beam passed through a lead collimator 30 in. 
long with a 1 in. wide and 2 in. high aperture. A 35-in. 
variable field magnet immediately following the collima­
tor analyzed the particles with respect to their momen­
tum. The two scintillation counters used to determine 
the time of flight were placed on a line making an 8° 
angle with the collimated beam. The back counter posi­
tion was fixed at ^33 ft from the center of the bending 
magnet. The forward counter position was varied from 
6 to 20 ft from the back counter according to the de­
sired resolution. 

The first scintillator was £ in.X^ in.Xi in. Pilot B 
mounted directly on one of its smaller surfaces to an 
Amperex 56 AVP photomultiplier placed perpendicular 
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The momentum spectra of particles emerging at 30° to a 30-GeV proton beam impinging upon various 
targets were measured using time-of-flight techniques. Intensities of protons, antiprotons, x mesons, K 
mesons, deuterons, and tritons in the range 1 to 3 GeV/c are given. Particular attention is given to the 
tritons and deuterons emitted from the different targets. Possible mechanisms for their production are 
discussed. 


